Certified Tester
Advanced Level Syllabus

Test Automation Engineer

Version 2016

International Software Testing Qualifications Board

/

| SIT QB

Copyright Notice
This document may be copied in its entirety, or extracts made, if the source is acknowledged.

g / International
Certified Tester ISTQB Software Testing

Advanced Level Syllabus — Test Automation Engineer [Qualifications Board

Copyright © International Software Testing Qualifications Board (hereinafter called ISTQB®).

Advanced Level Test Automation Working Group: Bryan Bakker, Graham Bath, Armin Born, Mark Fewster,
Jani Haukinen, Judy McKay, Andrew Pollner, Raluca Popescu, Ina Schieferdecker; 2016.

Version 2016 Page 2 of 84 21 Oct 2016

© International Software Testing Qualifications Board

Certified Tester

Advanced Level Syllabus — Test Automation Engineer [

/ International

ISTQB Software Testing

Qualifications Board

Revision History

Version Date Remarks
Initial Draft 13AUG2015 Initial draft
Second Draft 05NOV2015 LO mapping and repositioning
Third Draft 17DEC2015 Refined LOs
Beta Draft 11JAN2016 Edited draft
Beta 18MAR2016 Beta Release
Syllabus 2016 210CT2016 GA Release
Version 2016 Page 3 of 84 21 Oct 2016

© International Software Testing Qualifications Board

/ International

Certified Tester ISTQB Software Testing

Advanced Level Syllabus — Test Automation Engineer [Qualifications Board

Table of Contents

REVISION HISTOIY ...ttt ee e eeeeeesteteeeeeses e seeeeeeeeeeeeeeeeessssssssssssesssseseeneeeeeeeeeessnsnnnnnnn 3
LI] o) (SN0 0o 01 (=Y o | SRR 4
o] (g To111 1= o= 0 0 1= T o £ PSPPI 6
0. Introduction to thisS SYHADUSouiiiiiiiiic e e e e e e e e e e e e e e sarraeeeas 7
0.1 PUrpose of this DOCUMENTcciiiiiieiie e e e e e e e e et e e e e e s e sabaeereeeaaeeean 7
0.2 Scope Of this DOCUMENT...... ... ettt e e e e e e e e e e e e e e e e e nneeneeas 7
022 O | 1R Yoo o 1= SRR 7
L2 O TV | o) S o] o1 T SPUURERR 7
0.3 The Certified Tester Advanced Level Test Automation Engineerccccooieieinieniiiniiee e, 8
O I b oY Yox =1 o o <SPPSR 8
0.3.2 Entry and Renewal REQUIFEMENTS...... ...t naesnnnnnnnnes 8
0.3.3 LeVel Of KNOWIEAGEvviiiieei ettt e e e e e e e e e st e e e e e e e e s sennraneeaeeaean 8
LR R b = 41T =1 {0 o F OO PP PP PPPPPPN 8
0.3.5 ACCIEAIALIONcoii i e e e e e e e e e 8
04 Normative versus INformative Partsccoooiiiiiiii e 9
0.5 (Y= o) T =Y | R OTPRPRRN 9
0.6 How this Syllabus iS Organizedooiiiiiiiiii e 9
0.7 Terms, Definitions @and ACITONYMS ... et e e e e e e e e e e e e e nneeees 9
1. Introduction and Objectives for Test Automation - 30 MINS.cooiiiiiiiiiiiii e 11
1.1 Purpose of Test AUTOMALION ... e e e e e 12
1.2 Success Factors in Test AutomMation ... e 13
2. Preparing for Test Automation - 165 MINS.c.uiiiiiiiii e e 16
2.1 SUT Factors Influencing Test AUtOmMation.............ooiiiiiiiiiiiie e 17
2.2 Tool Evaluation and SEIECHONoiiiiiiiie e raeee e 18
2.3 Design for Testability and AUtOMatioNcc.uiiiiiiii e 20
3. The Generic Test Automation Architecture - 270 MINS.ccceiiiiie i 22
3.1 INtrOdUCHION 10 Gl A A e 23
3. 1.1 OVErVIEW OF the GTAA oot e e e e e e et e e e e e e s e b s e e eeaeesasssbeaereeeaaeeean 24
3.1.2 Test GeNEration LAYer.........coi it 26
3.1.3 Test Definition LAYEr ...t 26
3.1.4 TeSt EXECULION LAYEI....coo it 26
3.1.5 Test Adaptation LaYerooi i 27
3.1.6 Configuration Management of @ TAS e 27
3.1.7 Project Management Of @ TAScooi i e e e e e e e e e a e e e e 27
3.1.8 TAS Support for Test Management.............ooiiiii i e e e e e e 27
3.2 B I AN 1= o | o R 28
3.2.1 Introduction tO TAA DESIGNuuieii e e an 28
3.2.2 Approaches for Automating TeSt CaSEScceieeiiiiiiiiiiie e 31
3.2.3 Technical considerations of the SUTc..oiiiiiiiiiiii e 36
3.2.4 Considerations for Development/QA ProCeSSESuiiiiiiiiiiiiieee e 37
3.3 QLI NS D1V =1 (o] o] 4 =Y o S 38
3.3.1 Introduction to TAS DeVeIOPMENt ... e e e e e 38
3.3.2 Compatibility between the TAS and the SUT ... 39
3.3.3 Synchronization between TAS and SUTcoo i e 40
3.3.4 Building Reuse into the TAS ... 42
Version 2016 Page 4 of 84 21 Oct 2016

© International Software Testing Qualifications Board

/ International

Certified Tester ISTQB Software Testing

Advanced Level Syllabus — Test Automation Engineer [Qualifications Board
3.3.5 Support for a Variety of Target SYSIEMSccoiiiiiiiiiiiiiee e 43
4 Deployment Risks and Contingencies - 150 MIiNS.........cccuviiiiieiiiciiiee e 44
4.1 Selection of Test Automation Approach and Planning of Deployment/Rollout 45
I I 1o o =T P 45
I 1= o] (o Y/ o 1= o | P 46
4.1.3 Deployment of the TAS Within the Software Lifecycle..........ccccooniiiiii e 47
4.2 Risk Assessment and Mitigation Strategies ..o 47
4.3 Test Automation MaiNtENANCEoooi i e e e e e e eneenes 49
4.3.1 Types of MAINTENANCEccooiuiiiii et 49
PG TS TotoT o 1Y o To Y o] o] o =T o S 49
5 Test Automation Reporting and Metrics - 165 MINS.c.oiiiiiiiiiii e 52
5.1 Selection Of TAS MEITICS ...coouiiiii et e e et e e et e e e snbe e e e e aneeas 53
52 Implementation Of MEASUIEMENTcoi i e e e e e e e e e e 56
5.3 Logging of the TAS and the SUTeeiiiiiiiiee e e e e e s e e e e e e e s anes 57
54 Test AUtOMaAtion RePOIINGccco i e e 58
6 Transitioning Manual Testing to an Automated Environment - 120 mins.cccc . 60
6.1 Criteria for AUTOMAtIONttt e e e e e e e e eas 61
6.2 Identify Steps Needed to Implement Automation within Regression Testing...........cccccevvieeene 65
6.3 Factors to Consider when Implementing Automation within New Feature Testing................... 67
6.4 Factors to Consider when Implementing Automation of Confirmation Testingccccceveeee. 68
7 Verifying the TAS - 120 MNS...couiiii ettt et e e s e e e e anneee s 69
7.1 Verifying Automated Test Environment Componentscooociiiiiiiiiiiiiiiieeieee e 70
7.2 Verifying the Automated TeSt SUILEcooiiiiiiiiieeec e 72
8 Continuous IMpProvement - 150 MINS.uiiiiiiiiiiie e e e e e e e e et e e e e e e s e sanreeeaaeeeanns 74
8.1 Options for Improving Test AUtOMAtIONcooiiiiiiiiie e e 75
8.2 Planning the Implementation of Test Automation Improvement................ccooeviiiviiiieeieccinneen. 77
9 C =Y =T oY PSSP 79
9.1 Y= o b= o SRR 79
9.2 [ISTQB DOCUMENTS ...ttt e et e e e e e e e e e e et e e e e e e e e e anneseeeeaeeaeeaaannnneeaaaeaanns 80
9.3 LI = 1o 1= 0 =42 80
94 L0 T SRS 80
9.5 WED REFEIENCES ...t e e e e e e e e e e e e e e e e e e nneees 81
10 Notice to TraiNiNg PrOVIAEISiiiiiiiiei et e e n 82
O Tt N I = o 11T T T 0= PP PPP PRSP 82
10.2 Practical Exercises in the WOrKpPIaceooeveviiiiiiiiiiiiiee ettt 82
10.3 RUIES TOr €-LEAMING ..o e e e e e e e e e e e e e e eaeeeeenaareaeeeas 82
L 1 o L= GOSN 83

Version 2016 Page 5 of 84 21 Oct 2016

© International Software Testing Qualifications Board

g / International
Certified Tester ISTQB Software Testing

Advanced Level Syllabus — Test Automation Engineer [Qualifications Board

Acknowledgements

This document was produced by a core team from the International Software Testing Qualifications Board
Advanced Level Working Group.

The core team thanks the review team and all National Boards for their suggestions and input.

At the time the Advanced Level Syllabus for this module was completed, the Advanced Level Working
Group - Test Automation had the following membership: Bryan Bakker, Graham Bath (Advanced Level
Working Group Chair), Armin Beer, Inga Birthe, Armin Born, Alessandro Collino, Massimo Di Carlo, Mark
Fewster, Mieke Gevers, Jani Haukinen, Skule Johansen, Eli Margolin, Judy McKay (Advanced Level
Working Group Vice Chair), Kateryna Nesmyelova, Mahantesh (Monty) Pattan, Andrew Pollner (Advanced
Level Test Automation Chair), Raluca Popescu, loana Prundaru, Riccardo Rosci, Ina Schieferdecker, Gil
Shekel, Chris Van Bael.

The core team authors for this syllabus: Andrew Pollner (Chair), Bryan Bakker, Armin Born, Mark Fewster,
Jani Haukinen, Raluca Popescu, Ina Schieferdecker.

The following persons participated in the reviewing, commenting and balloting of this syllabus (alphabetical
order): Armin Beer, Tibor Cséndes, Massimo Di Carlo, Chen Geng, Cheryl George, Kari Kakkonen, Jen
Leger, Singh Manku, Ana Paiva, Raluca Popescu, Meile Posthuma, Darshan Preet, loana Prundaru,
Stephanie Ulrich, Erik van Veenendaal, Rahul Verma.

This document was formally released by the General Assembly of ISTQB October 21, 2016.

Version 2016 Page 6 of 84 21 Oct 2016

© International Software Testing Qualifications Board

g / International
Certified Tester ISTQB Software Testing

Advanced Level Syllabus — Test Automation Engineer [Qualifications Board

0. Introduction to this Syllabus

0.1 Purpose of this Document

This syllabus forms the basis for the International Software Testing Qualification at the Advanced Level for
Test Automation - Engineering. The ISTQB provides this syllabus as follows:

o To Member Boards, to translate into their local language and to accredit training providers.
National boards may adapt the syllabus to their particular language needs and modify the
references to adapt to their local publications.

e To Exam Boards, to derive examination questions in their local language adapted to the learning
objectives for each module.

e To training providers, to produce courseware and determine appropriate teaching methods.

e To certification candidates, to prepare for the exam (as part of a training course or
independently).

e To the international software and system engineering community, to advance the profession of
software and system testing, and as a basis for books and articles.

The ISTQB may allow other entities to use this syllabus for other purposes, provided they seek and obtain
prior written permission.

0.2 Scope of this Document

0.2.1 In Scope

This document describes the tasks of a test automation engineer (TAE) in designing, developing, and
maintaining test automation solutions. It focuses on the concepts, methods, tools, and processes for
automating dynamic functional tests and the relationship of those tests to test management, configuration
management, defect management, software development processes and quality assurance.

Methods described are generally applicable across variety of software lifecycle approaches (e.g., agile,
sequential, incremental, iterative), types of software systems (e.g., embedded, distributed, mobile) and test
types (functional and non-functional testing).

0.2.2 Out of Scope

The following aspects are out of scope for this Test Automation — Engineering syllabus:

o Test management, automated creation of test specifications and automated test generation.

o Tasks of test automation manager (TAM) in planning, supervising and adjusting the development
and evolution of test automation solutions.

e Specifics of automating non-functional tests (e.g., performance).

o Automation of static analysis (e.g., vulnerability analysis) and static test tools.

e Teaching of software engineering methods and programming (e.g., which standards to use and
which skills to have for realizing a test automation solution).

e Teaching of software technologies (e.g., which scripting techniques to use for implementing a test
automation solution).

e Selection of software testing products and services (e.g., which products and services to use for a
test automation solution).

Version 2016 Page 7 of 84 21 Oct 2016

© International Software Testing Qualifications Board

g / International
Certified Tester ISTQB Software Testing

Advanced Level Syllabus — Test Automation Engineer [Qualifications Board

0.3 The Certified Tester Advanced Level Test Automation Engineer

0.3.1 Expectations

The Advanced Level qualification is aimed at people who wish to build on the knowledge and skills acquired
at the Foundation Level and develop further their expertise in one or more specific areas. The modules
offered at the Advanced Level Specialist cover a wide range of testing topics.

A Test Automation Engineer is one who has broad knowledge of testing in general, and an in-depth
understanding in the special area of test automation. An in-depth understanding is defined as having
sufficient knowledge of test automation theory and practice to be able to influence the direction that an
organization and/or project takes when designing, developing and maintaining test automation solutions for
functional tests.

The Advanced Level Modules Overview [ISTQB-AL-Modules] document describes the business outcomes
for this module.

0.3.2 Entry and Renewal Requirements

General entry criteria for the Advanced Level are described on the ISTQB web site [ISTQB-Web], Advanced
Level section.

In addition to these general entry criteria, candidates must hold the ISTQB Foundation Level certificate
[ISTQB-CTFL] to sit for the Advanced Level Test Automation Engineer certification exam.

0.3.3 Level of Knowledge

Learning objectives for this syllabus are captured at the beginning of each chapter for clear identification.
Each topic in the syllabus will be examined according to the learning objective assigned to it.

The cognitive levels assigned to learning objectives (“K-levels”) are described on the ISTQB web site
[ISTQB-Web].
0.3.4 Examination

The examination for this Advanced Level Certificate shall be based on this syllabus plus the Foundation
Level Syllabus [ISTQB-FL]. Answers to examination questions may require the use of material based on
more than one section of these syllabi.

The format of the examination is described on the ISTQB web site [ISTQB-Web], Advanced Level section.
Some helpful information for those taking exams is also included on the ISTQB web site.

0.3.5 Accreditation

An ISTQB Member Board may accredit training providers whose course material follows this syllabus.

The ISTQB web site [ISTQB-Web], Advanced Level section describes the specific rules which apply to
training providers for the accreditation of courses.

Version 2016 Page 8 of 84 21 Oct 2016

© International Software Testing Qualifications Board

g / International
Certified Tester ISTQB Software Testing

Advanced Level Syllabus — Test Automation Engineer [Qualifications Board

0.4 Normative versus Informative Parts

Normative parts of the syllabus are examinable. These are:
e Learning objectives
o Keywords
The rest of the syllabus is informative and elaborates on the learning objectives.

0.5 Level of Detail

The level of detail in this syllabus allows internationally consistent teaching and examination. In order to
achieve this goal, the syllabus consists of:
e Learning objectives for each knowledge area, describing the cognitive learning outcome and
mindset to be achieved (these are normative)
e Alist of information to teach, including a description of the key concepts to teach, sources such
as accepted literature or standards, and references to additional sources if required (these are
informative)

The syllabus content is not a description of the entire knowledge area of test automation engineering; it
reflects the level of detail to be covered in an accredited Advanced Level training course.

0.6 How this Syllabus is Organized

There are eight major chapters. The top level heading shows the time for the chapter. For example:
3. The Generic Test Automation Architecture 270 mins.

shows that Chapter 3 is intended to have a time of 270 minutes for teaching the material in the chapter.
Specific learning objectives are listed at the start of each chapter.

0.7 Terms, Definitions and Acronyms

Many terms used in the software literature are used interchangeably. The definitions in this Advanced Level
Syllabus are available in the Standard Glossary of Terms Used in Software Testing, published by the ISTQB
[ISTQB-Glossary].

Each of the keywords listed at the start of each chapter in this Advanced Level Syllabus is defined in
[ISTQB-Glossary].

The following acronyms are used in this document:

CLI Command Line Interface

EMTE Equivalent Manual Test Effort

gTAA Generic Test Automation Architecture (providing a blueprint for test automation solutions)
GUI Graphical User Interface

SUT system under test, see also test object

TAA Test Automation Architecture (an instantiation of gTAA to define the architecture of a TAS)

Version 2016 Page 9 of 84 21 Oct 2016

© International Software Testing Qualifications Board

Certified Tester

/ International

ISTQB Software Testing

Advanced Level Syllabus — Test Automation Engineer [Qualifications Board

TAE

Test Automation Engineer (the person who is responsible for the design of a TAA, including the
implementation of the resulting TAS, its maintenance and technical evolution)

TAF Test Automation Framework (the environment required for test automation including test harnesses
and artifacts such as test libraries)

TAM Test Automation Manager (the person responsible for the planning and supervision of the
development and evolution of a TAS)

TAS Test Automation Solution (the realization/implementation of a TAA, including test harnesses and
artifacts such as test libraries)

ul User Interface

Version 2016 Page 10 of 84 21 Oct 2016

© International Software Testing Qualifications Board

/ International

Certified Tester ISTQB Software Testing

Advanced Level Syllabus — Test Automation Engineer [Qualifications Board

1. Introduction and Objectives for Test Automation - 30 mins.

Keywords
API testing, CLI testing, GUI testing, System Under Test, test automation architecture, test automation

framework, test automation strategy, test automation, test script, testware
Learning Objectives for Introduction and Objectives for Test Automation

1.1 Purpose of Test Automation
ALTA-E-1.1.1 (K2) Explain the objectives, advantages, disadvantages and limitations of test automation

1.2 Success Factors in Test Automation
ALTA-E-1.2.1 (K2) Identify technical success factors of a test automation project

Version 2016 Page 11 of 84 21 Oct 2016

© International Software Testing Qualifications Board

g / International
Certified Tester ISTQB Software Testing

Advanced Level Syllabus — Test Automation Engineer [Qualifications Board

1.1 Purpose of Test Automation

In software testing, test automation (which includes automated test execution) is one or more of the
following tasks:

e Using purpose built software tools to control and set up test preconditions

o Executing tests

e Comparing actual outcomes to predicted outcomes

A good practice is to separate the software used for testing from the system under test (SUT) itself to
minimize interference. There are exceptions, for example embedded systems where the test software
needs to be deployed to the SUT.

Test automation is expected to help run many test cases consistently and repeatedly on different versions
of the SUT and/or environments. But test automation is more than a mechanism for running a test suite
without human interaction. It involves a process of designing the testware, including:

e Software

e Documentation

e Testcases

e Test environments
e Testdata

Testware is necessary for the testing activities that include:
¢ Implementing automated test cases
e Monitoring and controlling the execution of automated tests
o Interpreting, reporting and logging the automated test results

Test automation has different approaches for interacting with a SUT:
e Testing through the public interfaces to classes, modules or libraries of the SUT (API testing)
e Testing through the user interface of the SUT (e.g., GUI testing or CLI testing)
e Testing through a service or protocol

Objectives of test automation include:
e Improving test efficiency
Providing wider function coverage
Reducing the total test cost
Performing tests that manual testers cannot
Shortening the test execution period
Increasing the test frequency/reducing the time required for test cycles

Advantages of test automation include:
e More tests can be run per build
The possibility to create tests that cannot be done manually (real-time, remote, parallel tests)
Tests can be more complex
Tests run faster
Tests are less subject to operator error
More effective and efficient use of testing resources
Quicker feedback regarding software quality
Improved system reliability (e.g., repeatability, consistency)
Improved consistency of tests

Version 2016 Page 12 of 84 21 Oct 2016

© International Software Testing Qualifications Board

/ International

Certified Tester ISTQB Software Testing

Advanced Level Syllabus — Test Automation Engineer [Qualifications Board

Disadvantages of test automation include:

Additional costs are involved

Initial investment to setup TAS

Requires additional technologies

Team needs to have development and automation skills

On-going TAS maintenance requirement

Can distract from testing objectives, e.g., focusing on automating tests cases at the expense of
executing tests

Tests can become more complex

Additional errors may be introduced by automation

Limitations of test automation include:

Not all manual tests can be automated

The automation can only check machine-interpretable results
The automation can only check actual results that can be verified by an automated test oracle

Not a replacement for exploratory testing

1.2 Success Factors in Test Automation

The following success factors apply to test automation projects that are in operation and therefore the focus
is on influences that impact on the long term success of the project. Factors influencing the success of test
automation projects at the pilot stage are not considered here.

Major success factors for test automation include the following:

Test Automation Architecture (TAA)

The Test Automation Architecture (TAA) is very closely aligned with the architecture of a software
product. It should be clear which functional and non-functional requirements the architecture is to
support. Typically this will be the most important requirements.

Often TAA is designed for maintainability, performance and learnability. (See ISO/IEC 25000:2014
for details of these and other non-functional characteristics.) It is helpful to involve software
engineers who understand the architecture of the SUT.

SUT Testability

The SUT needs to be designed for testability that supports automated testing. In the case of GUI
testing, this could mean that the SUT should decouple as much as possible the GUI interaction and
data from the appearance of the graphical interface. In the case of API testing, this could mean that
more classes, modules or the command-line interface need to be exposed as public so that they
can be tested.

The testable parts of the SUT should be targeted first. Generally, a key factor in the success of test
automation lies in the ease of implementing automated test scripts. With this goal in mind, and also
to provide a successful proof of concept, the Test Automation Engineer (TAE) needs to identify
modules or components of the SUT that are easily tested with automation and start from there.

Version 2016 Page 13 of 84 21 Oct 2016

© International Software Testing Qualifications Board

/ International

Certified Tester ISTQB Software Testing

Advanced Level Syllabus — Test Automation Engineer [Qualifications Board

Test Automation Strategy

A practical and consistent test automation strategy that addresses maintainability and consistency
of the SUT.

It may not be possible to apply the test automation strategy in the same way to both old and new
parts of the SUT. When creating the automation strategy, consider the costs, benefits and risks of
applying it to different parts of the code.

Consideration should be given to testing both the user interface and the APl with automated test
cases to check the consistency of the results.

Test Automation Framework (TAF)

A test automation framework (TAF) that is easy to use, well documented and maintainable,
supports a consistent approach to automating tests.

In order to establish an easy to use and maintainable TAF, the following must be done:

e Implement reporting facilities: The test reports should provide information (pass/fail/error/not
run/aborted, statistical, etc.) about the quality of the SUT. Reporting should provide the
information for the involved testers, test managers, developers, project managers and other
stakeholders to obtain an overview of the quality.

o Enable easy troubleshooting: In addition to the test execution and logging, the TAF has to
provide an easy way to troubleshoot failing tests. The test can fail due to

o failures found in the SUT
o failures found in the TAS
o problem with the tests themselves or the test environment.

o Address the test environment appropriately: Test tools are dependent upon consistency in the
test environment. Having a dedicated test environment is necessary in automated testing. If
there is no control of the test environment and test data, the setup for tests may not meet the
requirements for test execution and it is likely to produce false execution results.

o Document the automated test cases: The goals for test automation have to be clear, e.g., which
parts of application are to be tested, to what degree, and which attributes are to be tested
(functional and non-functional). This must be clearly described and documented.

o Trace the automated test: TAF shall support tracing for the test automation engineer to trace
individual steps to test cases.

o Enable easy maintenance: Ideally, the automated test cases should be easily maintained so
that maintenance will not consume a significant part of the test automation effort. In addition,
the maintenance effort needs to be in proportion to the scale of the changes made to the SUT.
To do this, the cases must be easily analyzable, changeable and expandable. Furthermore,
automated testware reuse should be high to minimize the number of items requiring changes.

Version 2016 Page 14 of 84 21 Oct 2016

© International Software Testing Qualifications Board

g / International
Certified Tester ISTQB Software Testing

Advanced Level Syllabus — Test Automation Engineer [Qualifications Board

o Keep the automated tests up-to-date: when new or changed requirements cause tests or entire
test suites to fail, do not disable the failed tests — fix them.

e Plan for deployment: Make sure that test scripts can be easily deployed, changed and
redeployed.

o Retire tests as needed: Make sure that automated test scripts can be easily retired if they are
no longer useful or necessary.

e Monitor and restore the SUT: In real practice, to continuously run a test case or set of test
cases, the SUT must be monitored continuously. If the SUT encounters a fatal error (such as
a crash), the TAF must have the capability to recover, skip the current case, and resume testing
with the next case.

The test automation code can be complex to maintain. It is not unusual to have as much code for testing
as the code for the SUT. This is why it is of utmost importance that the test code be maintainable. This is
due to the different test tools being used, the different types of verification that are used and the different
testware artifacts that have to be maintained (such as test input data, test oracles, test reports).

With these maintenance considerations in mind, in addition to the important items that should be done,
there are a few that should not be done, as follows:
e Do not create code that is sensitive to the interface (i.e., it would be affected by changes in the
graphical interface or in non-essential parts of the API).
e Do not create test automation that is sensitive to data changes or has a high dependency on
particular data values (e.qg., test input depending on other test outputs).
e Do not create an automation environment that is sensitive to the context (e.g., operating system
date and time, operating system localization parameters or the contents of another application). In
this case, it is better to use test stubs as necessary so the environment can be controlled.

The more success factors that are met, the more likely the test automation project will succeed. Not all
factors are required, and in practice rarely are all factors met. Before starting the test automation project, it
is important to analyze the chance of success for the project by considering the factors in place and the
factors missing keeping risks of the chosen approach in mind as well as project context. Once the TAA is
in place, it is important to investigate which items are missing or still need work.

Version 2016 Page 15 of 84 21 Oct 2016

© International Software Testing Qualifications Board

g / International
Certified Tester ISTQB Software Testing

Advanced Level Syllabus — Test Automation Engineer [Qualifications Board

2. Preparing for Test Automation - 165 mins.

Keywords
testability, driver, level of intrusion, stub, test execution tool, test hook, test automation manager

Learning Objectives for Preparing for Test Automation

2.1 SUT Factors Influencing Test Automation
ALTA-E-2.1.1 (K4) Analyze a system under test to determine the appropriate automation solution

2.2 Tool Evaluation and Selection
ALTA-E-2.2.1 (K4) Analyze test automation tools for a given project and report technical findings and
recommendations

2.3 Design for Testability and Automation
ALTA-E-2.3.1 (K2) Understand "design for testability" and "design for test automation" methods
applicable to the SUT

Version 2016 Page 16 of 84 21 Oct 2016

© International Software Testing Qualifications Board

Certified Tester

/ International

ISTQB Software Testing

Advanced Level Syllabus — Test Automation Engineer [Qualifications Board

2.1 SUT Factors Influencing Test Automation

When evaluating the context of the SUT and its environment, factors that influence test automation need
to be identified to determine an appropriate solution. These may include the following:

SUT interfaces

The automated test cases invoke actions on the SUT. For this, the SUT must provide interfaces
via which the SUT can be controlled. This can be done via Ul controls, but also via lower-level
software interfaces. In addition, some test cases may be able to interface at the communication
level (e.g., using TCP/IP, USB, or proprietary messaging interfaces).

The decomposition of the SUT allows the test automation to interface with the SUT on different test
levels. It is possible to automate the tests on a specific level (e.g., component and system level),
but only when the SUT supports this adequately. For example, at the component level, there may
be no user interface that can be used for testing, so different, possibly customized, software
interfaces (also called test hooks) need to be available.

Third party software

Often the SUT not only consists of software written in the home organization but may also include
software provided by third parties. In some contexts, this third party software may need testing, and
if test automation is justified, it may need a different test automation solution, such as using an API.

Levels of intrusion

Different test automation approaches (using different tools) have different levels of intrusion. The
greater the number of changes that are required to be made to the SUT specifically for automated
testing, the higher the level of intrusion. Using dedicated software interfaces requires a high level
of intrusion whereas using existing Ul elements has a lower level of intrusion. Using hardware
elements of the SUT (such as keyboards, hand-switches, touchscreens, communication interfaces)
have an even higher level of intrusion.

The problem with higher levels of intrusion is the risk for false alarms. The TAS can exhibit failures
that may be due to the level of intrusion imposed by the tests, but these are not likely to happen
when the software system is being used in a real live environment. Testing with a high level of
intrusion is usually a simpler solution for the test automation approach.

Different SUT architectures

Different SUT architectures may require different test automation solutions. A different approach is
needed for an SUT written in C++ using COM technology than for an SUT written in Python. It may
be possible for these different architectures to be handled by the same test automation strategy,
but that requires a hybrid strategy with the ability to support them.

Size and complexity of the SUT

Consider the size and complexity of the current SUT and plans for future development. For a small
and simple SUT, a complex and ultra-flexible test automation approach may not be warranted. A
simple approach may be better suited. Conversely, it may not be wise to implement a small and
simple approach for a very large and complex SUT. At times though, it is appropriate to start small
and simple even for a complex SUT but this should be a temporary approach (see Chapter 3 for
more details).

Version 2016 Page 17 of 84 21 Oct 2016

© International Software Testing Qualifications Board

/ International

Certified Tester ISTQB Software Testing

Advanced Level Syllabus — Test Automation Engineer [Qualifications Board

Several factors described here are known (e.g., size and complexity, available software interfaces) when
the SUT is already available, but most of the time the development of the test automation should start
before the SUT is available. When this happens several things need to be estimated or the TAE can specify
the software interfaces that are needed. (see Section 2.3 for more details).

Even when the SUT does not yet exist, test automation planning can start. For example:
¢ When the requirements (functional or non-functional) are known, candidates for automation can be
selected from those requirements together with identifying the means to test them. Planning for
automation can begin for those candidates, including identifying the requirements for the
automation and determining the test automation strategy.
e When the architecture and technical design is being developed, the design of software interfaces
to support testing can be undertaken.

2.2 Tool Evaluation and Selection

The primary responsibility for the tool selection and evaluation process belongs with the Test Automation
Manager (TAM). However the TAE will be involved in supplying information to the TAM and conducting
many of the evaluation and selection activities. The concept of the tool evaluation and selection process
was introduced at the Foundation Level and more details of this process are described in the Advanced
Level — Test Manager Syllabus [ISTQB-AL-TM].

The TAE will be involved throughout the tool evaluation and selection process but will have particular
contributions to make to the following activities:
e Assessing organizational maturity and identification of opportunities for test tool support
Assessing appropriate objectives for test tool support
Identifying and collecting information on potentially suitable tools
Analyzing tool information against objectives and project constraints
Estimating the cost-benefit ratio based on a solid business case
Making a recommendation on the appropriate tool
Identifying compatibility of the tool with SUT components

Functional test automation tools frequently cannot meet all the expectations or the situations that are
encountered by an automation project. The following is a set of examples of these types of issues (but it is
definitely not a complete list):

Version 2016 Page 18 of 84 21 Oct 2016

© International Software Testing Qualifications Board

Certified Tester

Advanced Level Syllabus — Test Automation Engineer

/ International

ISTQB Software Testing

Qualifications Board

Finding

Examples

Possible Solutions

The tool’s interface does
not work with other tools
that are already in place

The test management tool has
been updated and the connecting
interface has changed

The information from pre-sales
support was wrong and not all
data can be transferred to the
reporting tool

Pay attention to the
release notes before any
updates, and for big
migrations test before
migrating to production
Try to gain an onsite
demonstration of the tool
that uses the real SUT
Seek support from the
vendor and/or user
community forums

Some SUT dependencies
are changed to ones not
supported by the test tool

The development department has
updated to the newest version of
Java

Synchronize upgrades for
development/test
environment and the test
automation tool

Object on GUI could not
be captured

The object is visible but the test
automation tool cannot interact
with it

Try to use only well-known
technologies or objects in
development

Do a pilot project before
buying a test automation
tool

Have developers define
standards for objects

Tool looks very
complicated

The tool has a huge feature set
but only part of that will be used

Try to find a way to limit
the feature set by
removing unwanted
features from the tool bar
Select a license to meet
your needs.

Try to find alternative tools
that are more focused on
the required functionality.

Conflict with other
systems

After installation of other software
the test automation tool will not
work anymore or vice versa

Read the release notes or
technical requirements
before installing.

Get confirmation from the
supplier that there will be
no impact to other tools.
Question user community
forums.

Impact on the SUT

During/after use of the test
automation tool the SUT is
reacting differently (e.g., longer
response time)

Use a tool that will not
need to change the SUT
(e.g., installation of
libraries, etc.)

Access to code

The test automation tool will
change parts of the source code

Use a tool that will not
need to change the source
code (e.g., installation of
libraries, etc.)

Version 2016

© International Software Testing Qualifications Board

Page 19 of 84

21 Oct 2016

Certified Tester

Advanced Level Syllabus — Test Automation Engineer

/ International

ISTQB Software Testing

[

Qualifications Board

Finding

Examples

Possible Solutions

Limited resources (mainly
in embedded
environments)

The test environment has limited
free resources or runs out of
resources (e.g., memory)

Read release notes and
discuss the environment
with the tool provider to get
confirmation that this will
not lead to problems.
Question user community

forums.

information that is not available to
the test automation engineer

Updates Update will not migrate all data or | ¢ Test upgrade on the test
corrupts existing automated test environment and get
scripts, data or configurations confirmation from the
Upgrade needs a different provider that migration will
(better) environment work

e Read update prerequisites
and decide if the update is
worth the effort

e Seek support from the
user community forums

Security Test automation tool requires e Test automation engineer

needs to be granted
access

Incompatibility between
different environments
and platforms

Test automation does not work
on all environments/platforms

Implement automated
tests to maximize tool
independence thereby
minimizing the cost of
using multiple tools.

2.3 Design for Testability and Automation

SUT testability (availability of software interfaces that support testing e.g., to enable control and
observability of the SUT) should be designed and implemented in parallel with the design and
implementation of the other features of the SUT. This can be done by the software architect (as testability
is just one of the non-functional requirements of the system), but often this is done by, or with the
involvement of, a TAE.

Design for testability consists of several parts:

e Observability: The SUT needs to provide interfaces that give insight into the system. Test cases
can then use these interfaces to check, for example, whether the expected behavior equals the
actual behavior.

e Control(ability): The SUT needs to provide interfaces that can be used to perform actions on the
SUT. This can be Ul elements, function calls, communication elements (e.g., TCP/IP or USB
protocol), electronic signals (for physical switches), etc.

e Clearly defined architecture: The third important part of design for testability is an architecture that
provides clear and understandable interfaces giving control and visibility on all test levels.

The TAE considers ways in which the SUT can be tested, including automated testing, in an effective
(testing the right areas and finding critical bugs) and efficient (without taking too much effort) way. Whenever
specific software interfaces are needed, they must be specified by the TAE and implemented by the

Version 2016

© International Software Testing Qualifications Board

Page 20 of 84 21 Oct 2016

/ International

Certified Tester ISTQB Software Testing

Advanced Level Syllabus — Test Automation Engineer [Qualifications Board

developer. It is important to define testability and, if needed, additional software interfaces early in the
project, so that development work can be planned and budgeted.

Some examples of software interfaces that support testing include:

e The powerful scripting capabilities of modern spreadsheets.

e Applying stubs or mocks to simulate software and/or hardware (e.g., electronic financial
transactions, software service, dedicated server, electronic board, mechanical part) that is not yet
available or is too expensive to buy, allows testing of the software in the absence of that specific
interface.

e Software interfaces (or stubs and drivers) can be used to test error conditions. Consider a device
with an internal hard disk drive (HDD). The software controlling this HDD (called a driver) should
be tested for failures or wear of the HDD. Doing this by waiting for a HDD to fail is not very efficient
(or reliable). Implementing software interfaces that simulate defective or slow HDDs can verify that
the driver software performs correctly (e.g., provides an error message, retries).

e Alternative software interfaces can be used to test an SUT when no Ul is available yet (and this is
often considered to be a better approach anyway). Embedded software in technical systems often
needs to monitor the temperature in the device and trigger a cooling function to start when the
temperature rises above a certain level. This could be tested without the hardware using a software
interface to specify the temperature.

o State transition testing is used to evaluate the state behavior of the SUT. A way to check whether
the SUT is in the correct state is by querying it via a customized software interface designed for
this purpose (although this also includes a risk, see level of intrusion in Section 2.1).

Design for automation should consider that:
o Compatibility with existing test tools should be established early on.

o The issue of test tool compatibility is critical in that it may impact the ability to automate tests of
important functionality (e.g., incompatibility with a grid control prevents all tests using that
control).

e Solutions may require development of program code and calls to APIs

Designing for testability is of the utmost importance for a good test automation approach, and can also
benefit manual test execution.

Version 2016 Page 21 of 84 21 Oct 2016

© International Software Testing Qualifications Board

g / International
Certified Tester ISTQB Software Testing

Advanced Level Syllabus — Test Automation Engineer [Qualifications Board

3. The Generic Test Automation Architecture - 270 mins.

Keywords

capture/playback, data-driven testing, generic test automation architecture, keyword-driven testing, linear
scripting, model-based testing, process-driven scripting, structured scripting, test adaptation layer, test
automation architecture, test automation framework, test automation solution, test definition layer, test
execution layer, test generation layer

Learning Objectives for The Generic Test Automation Architecture

3.1 Introduction to gTAA
ALTA-E-3.1.1 (K2) Explain the structure of the gTAA

3.2 TAA Design

ALTA-E-3.2.1 (K4) Design the appropriate TAA for a given project

ALTA-E-3.2.2 (K2) Explain the role that layers play within a TAA

ALTA-E-3.2.3 (K2) Understand design considerations for a TAA

ALTA-E-3.2.4 (K4) Analyze factors of implementation, use, and maintenance requirements for a given
TAS

3.3 TAS Development
ALTA-E-3.3.1 (K3) Apply components of the generic TAA (gTAA) to construct a purpose-built TAA
ALTA-E-3.3.2 (K2) Explain the factors to be considered when identifying reusability of components

Version 2016 Page 22 of 84 21 Oct 2016

© International Software Testing Qualifications Board

/ International

Certified Tester ISTQB Software Testing

Advanced Level Syllabus — Test Automation Engineer [Qualifications Board

3.1 Introduction to gTAA

A test automation engineer (TAE) has the role of designing, developing, implementing, and maintaining test
automation solutions (TASs). As each solution is developed, similar tasks need to be done, similar
questions need to be answered, and similar issues need to be addressed and prioritized. These reoccurring
concepts, steps, and approaches in automating testing become the basis of the generic test automation
architecture, called gTAA in short.

The gTAA presents the layers, components, and interfaces of a gTAA, which are then further redefined into
the concrete TAA for a particular TAS. It allows for a structured and modular approach to building a test
automation solution by:
e Defining the concept space, layers, services, and interfaces of a TAS to enable the realization of
TASs by in-house as well as by externally developed components
e Supporting simplified components for the effective and efficient development of test automation
e Re-using test automation components for different or evolving TASs for software product lines and
families and across software technologies and tools
e Easing the maintenance and evolution of TASs
¢ Defining the essential features for a user of a TAS

A TAS consists of both the test environment (and its artifacts) and the test suites (a set of test cases
including test data). A test automation framework (TAF) can be used to realize a TAS. It provides support
for the realization of the test environment and provides tools, test harnesses, or supporting libraries.

It is recommended that the TAA of a TAS complies with the following principles that support easy
development, evolution, and maintenance of the TAS:

e Single responsibility: Every TAS component must have a single responsibility, and that
responsibility must be encapsulated entirely in the component. In other words, every component of
a TAS should be in charge of exactly one thing, e.g., generating keywords or data, creating test
scenarios, executing test cases, logging results, generating execution reports.

o Extension (see e.g., open/closed principle by B. Myer): Every TAS component must be open for
extension, but closed for modification. This principle means that it should be possible to modify or
enrich the behavior of the components without breaking the backward compatible functionality.

e Replacement (see e.g., substitution principle by B. Liskov): Every TAS component must be
replaceable without affecting the overall behavior of the TAS. The component can be replaced by
one or more substituting components but the exhibited behavior must be the same.

e Component segregation (see e.g., interfaces segregation principle by R.C. Martin): It is better to
have more specific components than a general, multi-purpose component. This makes substitution
and maintenance easier by eliminating unnecessary dependencies.

o Dependency inversion: The components of a TAS must depend on abstractions rather than on low-
level details. In other words, the components should not depend on specific automated test
scenarios.

Typically, a TAS based on the gTAA will be implemented by a set of tools, their plugins, and/or components.
It is important to note that the gTAA is vendor-neutral: it does not predefine any concrete method,
technology, or tool for the realization of a TAS. The gTAA can be implemented by any software engineering
approach, e.g., structured, object-oriented, service-oriented, model-driven, as well as by any software
technologies and tools. In fact, a TAS is often implemented using off-the-shelf tools, but will typically need
additional SUT specific additions and/or adaptations.

Version 2016 Page 23 of 84 21 Oct 2016

© International Software Testing Qualifications Board

g / International
Certified Tester ISTQB Software Testing

Advanced Level Syllabus — Test Automation Engineer [Qualifications Board

Other guidelines and reference models relating to TASs are software engineering standards for the selected
SDLC (Software Development Lifecycle), programming technologies, formatting standards, etc. It is not in
the scope of this syllabus to teach software engineering in general, however, a TAE is expected to have
skills, experience, and expertise in software engineering.

Furthermore, a TAE needs to be aware of industry coding and documentation standards and best practices
to make use of them while developing a TAS. These practices can increase maintainability, reliability, and
security of the TAS. Such standards are typically domain-specific. Popular standards include:

e MISRA for C or C++

e JSF coding standard for C++

e AUTOSAR rules for MathWorks Matlab/Simulink®

3.1.1 Overview of the gTAA

The gTAA is structured into horizontal layers for the following:
e Test generation
e Test definition
e Test execution
o Test adaptation

The gTAA (see Figure 1: The Generic Test Automation Architecture) encompasses the following:

e The Test Generation Layer that supports the manual or automated design of test cases. It provides
the means for designing test cases.

o The Test Definition Layer that supports the definition and implementation of test suites and/or test
cases. It separates the test definition from the SUT and/or test system technologies and tools. It
contains means to define high-level and low-level tests, which are handled in the test data, test
cases, test procedures, and test library components or combinations thereof.

e The Test Execution Layer that supports the execution of test cases and test logging. It provides a
test execution tool to execute the selected tests automatically and a logging and reporting
component.

e The Test Adaptation Layer which provides the necessary code to adapt the automated tests for the
various components or interfaces of the SUT. It provides different adaptors for connecting to the
SUT via APIs, protocols, services, and others.

e |t also has interfaces for project management, configuration management and test management
in relation to test automation. For example, the interface between test management and test
adaptation layer copes with the selection and configuration of the appropriate adaptors in relation
to the chosen test configuration.

The interfaces between the gTAA layers and their components are typically specific and, therefore, not
further elaborated here.

It is important to understand that these layers can be present or absent in any given TAS. For example:

e If the test execution is to be automated, the test execution and the test adaptation layers need to
be utilized. They do not need to be separated and could be realized together, e.g., in unit test
frameworks.

e If the test definition is to be automated, the test definition layer is required.

e If the test generation is to be automated, the test generation layer is required.

Version 2016 Page 24 of 84 21 Oct 2016

© International Software Testing Qualifications Board

o / International
Certified Tester ISTQB Software Testing

Advanced Level Syllabus — Test Automation Engineer [Qualifications Board

Most often, one would start with the implementation of a TAS from bottom to top, but other approaches
such as the automated test generation for manual tests can be useful as well. In general it is advised to
implement the TAS in incremental steps (e.g., in sprints) in order to use the TAS as soon as possible and
to prove the added value of the TAS. Also, proofs of concept are recommended as part of test automation
project.

Any test automation project needs to be understood, set up, and managed as a software development
project and requires dedicated project management. The project management for the TAF development
(i.e., test automation support for a whole company, product families or product lines) can be separated from
the project management for the TAS (i.e., test automation for a concrete product).

Project Management

! ! !

Test Automation

Test Generation Layer
Manual Test
Design Models

!

Test Definition Layer

Test Test Test
Conditions Cases Procedures

—— 1 o |

Test Data

I Test Library l

:

Test Execution Layer

1agement

Test Execution

Test Mar

Test Logging Test Reporting

!

Test Adaptation Layer

Configuration Management

——tp

GUI
API
Services
Protocols
Databases
Simulators
Emulators
?
|
'

Test Automation Framework

Figure 1: The Generic Test Automation Architecture

Version 2016 Page 25 of 84 21 Oct 2016

© International Software Testing Qualifications Board

g / International
Certified Tester ISTQB Software Testing

Advanced Level Syllabus — Test Automation Engineer [Qualifications Board

3.1.2 Test Generation Layer

The test generation layer consists of tool support for the following:
e Manually designing test cases
e Developing, capturing, or deriving test data
e Automatically generating test cases from models that define the SUT and/or its environment (i.e.,
automated model-based testing)

The components in this layer are used to:
o Edit and navigate test suite structures
e Relate test cases to test objectives or SUT requirements
e Document the test design

For automated test generation the following capabilities may also be included:
o Ability to model the SUT, its environment, and/or the test system
e Ability to define test directives and to configure/parameterize test generation algorithms
e Ability to trace the generated tests back to the model (elements)

3.1.3 Test Definition Layer

The test definition layer consists of tool support for the following:
e Specifying test cases (at a high and/or low level)
Defining test data for low-level test cases
Specifying test procedures for a test case or a set of test cases
Defining test scripts for the execution of the test cases
Providing access to test libraries as needed (for example in keyword-driven approaches)

The components in this layer are used to:
e Partition/constrain, parameterize or instantiate test data
e Specify test sequences or fully-fledged test behaviors (including control statements and
expressions), to parameterize and/or to group them
e Document the test data, test cases and/or test procedures

3.1.4 Test Execution Layer

The test execution layer consists of tool support for the following:
e Executing test cases automatically
e Logging the test case executions
o Reporting the test results

The test execution layer may consist of components that provide the following capabilities:
e Set up and tear down the SUT for test execution

Set up and tear down test suites (i.e., set of test cases including test data)

Configure and parameterize the test setup

Interpret both test data and test cases and transform them into executable scripts

Instrument the test system and/or the SUT for (filtered) logging of test execution and/or for fault

injection

Analyze the SUT responses during test execution to steer subsequent test runs

e Validate the SUT responses (comparison of expected and actual results) for automated test case
execution results

Version 2016 Page 26 of 84 21 Oct 2016

© International Software Testing Qualifications Board

g / International
Certified Tester ISTQB Software Testing

Advanced Level Syllabus — Test Automation Engineer [Qualifications Board

e Control the automated test execution in time

3.1.5 Test Adaptation Layer

The test adaptation layer consists of tool support for the following:
Controlling the test harness

e Interacting with the SUT

e Monitoring the SUT

e Simulating or emulating the SUT environment

The test adaptation layer provides the following functionality:
¢ Mediating between the technology-neutral test definitions and the specific technology requirements
of the SUT and the test devices
¢ Applying different technology-specific adaptors to interact with the SUT
e Distributing the test execution across multiple test devices/test interfaces or executing tests locally

3.1.6 Configuration Management of a TAS

Normally, a TAS is being developed in various iterations/versions and needs to be compatible with the
iterations/versions of the SUT. The configuration management of a TAS may need to include:
e Test models
Test definitions/specifications including test data, test cases and libraries
Test scripts
Test execution engines and supplementary tools and components
Test adaptors for the SUT
Simulators and emulators for the SUT environment
Test results and test reports

These items constitute the testware and must be at the correct version to match the version of the SUT. In
some situations it might be necessary to revert to previous versions of the TAS, e.g., in case field issues
need to be reproduced with older SUT versions. Good configuration management enables this capability.

3.1.7 Project Management of a TAS

As any test automation project is a software project, it requires the same project management as any other
software project. A TAE needs to perform the tasks for all phases of the established SDLC methodology
when developing the TAS. Also, a TAE needs to understand that the development environment of the TAS
should be designed such that status information (metrics) can be extracted easily or automatically reported
to the project management of the TAS.

3.1.8 TAS Support for Test Management

A TAS must support the test management for the SUT. Test reports including test logs and test results
need to be extracted easily or automatically provided to the test management (people or system) of the
SUT.

Version 2016 Page 27 of 84 21 Oct 2016

© International Software Testing Qualifications Board

/ International

Certified Tester ISTQB Software Testing
Advanced Level Syllabus — Test Automation Engineer [Qualifications Board
3.2 TAA Design

3.2.1 Introduction to TAA Design

There are a number of principal activities required to design a TAA, which can be ordered according to the
needs of the test automation project or organization. These activities are discussed in the sections below.
More or fewer activities may be required depending on the complexity of the TAA.

Capture requirements needed to define an appropriate TAA
The requirements for a test automation approach need to consider the following:

e Which activity or phase of the test process should be automated, e.g., test management, test
design, test generation, or test execution. Note that test automation refines the fundamental test
process by inserting test generation between test design and test implementation.

o Which test level should be supported, e.g., component level, integration level, system level

e Which type of test should be supported, e.g., functional testing, conformance testing,
interoperability testing
Which test role should be supported, e.g., test executor, test analyst, test architect, test manager
Which software product, software product line, software product family should be supported, e.g.,
to define the span and lifetime of the implemented TAS

e Which SUT technologies should be supported, e.g., to define the TAS in view of compatibility to
the SUT technologies

Compare and contrast different design/architecture approaches
The TAE needs to analyze the pros and cons of different approaches when designing selected layers of
the TAA. These include but are not limited to:

Considerations for the test generation layer:

e Selection of manual or automated test generation

e Selection of for example requirements-based, data-based, scenario-based or behavior-
based test generation

e Selection of test generation strategies (e.g., model coverage such as classification trees for
data-based approaches, use case/exception case coverage for scenario-based approaches,
transition/state/path coverage for behavior-based approaches, etc.)

e Choosing of the test selection strategy. In practice, full combinatorial test generation is
infeasible as it may lead to test case explosion. Therefore, practical coverage criteria,
weights, risk assessments, etc. should be used to guide the test generation and subsequent
test selection.

Considerations for the test definition layer:

e Selection of data-driven, keyword-driven, pattern-based or model-driven test definition

e Selection of notation for test definition (e.g., tables, state-based notation, stochastic notation,
dataflow notation, business process notation, scenario-based notation, etc. by use of
spreadsheets, domain-specific test languages, the Testing and Test Control Notation (TTCN-
3), the UML Testing Profile (UTP), etc.)

e Selection of style guides and guidelines for the definition of high quality tests

e Selection of test case repositories (spreadsheets, databases, files, etc.)

Considerations for the test execution layer:

e Selection of the test execution tool

e Selection of interpretation (by use of a virtual machine) or compilation approach for
implementing test procedures — this choice typically depends on the chosen test execution
tool

Version 2016 Page 28 of 84 21 Oct 2016

© International Software Testing Qualifications Board

g / International
Certified Tester ISTQB Software Testing

Advanced Level Syllabus — Test Automation Engineer [Qualifications Board

e Selection of the implementation technology for implementing test procedures (imperative,
such as C; functional, such as Haskell or Erlang; object-oriented, such as C++, C#, Java;
scripting, such as Python or Ruby, or a tool-specific technology) — this choice is typically
dependent on the chosen test execution tool

e Selection of helper libraries to ease test execution (e.g., test device libraries,
encoding/decoding libraries, etc.)

Considerations for the test adaptation layer:
e Selection of test interfaces to the SUT
Selection of tools to stimulate and observe the test interfaces
Selection of tools to monitor the SUT during test execution
Selection of tools to trace test execution (e.g., including the timing of the test execution)

Identify areas where abstraction can deliver benefits

Abstraction in a TAA enables technology independence in that the same test suite can be used in different
test environments and on different target technologies. The portability of test artifacts is increased. In
addition, vendor-neutrality is assured which avoids lock-in effects for a TAS. Abstraction also improves
maintainability and adaptability to new or evolving SUT technologies. Furthermore, abstraction helps to
make a TAA (and its instantiations by TASs) more accessible to non-technicians as test suites can be
documented (including graphical means) and explained at a higher level, which improves readability and
understandability.

The TAE needs to discuss with the stakeholders in software development, quality assurance, and testing
which level of abstraction to use in which area of the TAS. For example, which interfaces of the test
adaptation and/or test execution layer need to be externalized, formally defined, and kept stable throughout
the TAA lifetime? It also needs to be discussed if an abstract test definition is being used or if the TAA uses
a test execution layer with test scripts only. Likewise, it needs to be understood if test generation is
abstracted by use of test models and model-based testing approaches. The TAE needs to be aware that
there are trade-offs between sophisticated and straightforward implementations of a TAA with respect to
overall functionality, maintainability, and expandability. A decision on which abstraction to use in a TAA
needs to take into account these trade-offs.

The more abstraction is used for a TAA, the more flexible it is with respect to further evolution or transitioning
to new approaches or technologies. This comes at the cost of larger initial investments (e.g., more complex
test automation architecture and tools, higher skill set requirements, bigger learning curves), which delays
the initial breakeven but can pay off in the long run. It may also lead to lower performance of the TAS.

While the detailed ROI (Return on Investment) considerations are the responsibility of the TAM, the TAE
needs to provide inputs to the ROI analysis by providing technical evaluations and comparisons of different
test automation architectures and approaches with respect to timing, costs, efforts, and benefits.

Understand SUT technologies and how these interconnect with the TAS
The access to the test interfaces of the SUT is central to any automated test execution. The access can be
available at the following levels:
e Software level, e.g., SUT and test software are linked together
e API level, e.g.,, the TAS invokes the functions/operations/methods provided at a (remote)
application programming interface
e Protocol level, e.g., the TAS interacts with the SUT via HTTP, TCP, etc.
e Service level, e.g., the TAS interacts with the SUT services via web services, RESTful services,
etc.

Version 2016 Page 29 of 84 21 Oct 2016

© International Software Testing Qualifications Board

/ International

Certified Tester ISTQB Software Testing

Advanced Level Syllabus — Test Automation Engineer [Qualifications Board

In addition, the TAE needs to decide about the paradigm of interaction of the TAA to be used for the
interaction between the TAS and SUT, whenever the TAS and SUT are separated by APls, protocols or
services. These paradigms include the following:
e Event-driven paradigm, which drives the interaction via events being exchanged on an event bus
e Client-server paradigm, which drives the interaction via service invocation from service requestors
to service provider
e Peer-to-peer paradigm, which drives the interaction via service invocation from either peer

Often the paradigm choice depends on the SUT architecture and may have implications on the SUT
architecture. The interconnection between the SUT and the TAA needs to be carefully analyzed and
designed in order to select a future-safe architecture between the two systems.

Understand the SUT environment

An SUT can be standalone software or software that works only in relation to other software (e.g., systems
of systems), hardware (e.g., embedded systems), or environmental components (e.g., cyber-physical
systems). A TAS simulates or emulates the SUT environment as part of an automated test setup.

Examples of test environments and sample uses include the following:

e A computer with both the SUT and the TAS — useful for testing a software application

e Individual networked computers for an SUT and TAS respectively — useful for testing server
software

e Additional test devices to stimulate and observe the technical interfaces of an SUT — useful for
testing the software for example on a set-top box

e Networked test devices to emulate the operational environment of the SUT — useful for testing the
software of a network router

e Simulators to simulate the physical environment of the SUT — useful for testing the software of an
embedded control unit

Time and complexity for a given testware architecture implementation
While the effort estimation for a TAS project is the responsibility of a TAM, a TAE needs to support a TAM
in this by providing good estimates for the time and complexity of a TAA design. Methods for estimations
and examples include the following:
e Analogy-based estimation such as such as functions points, three-point estimation, wideband
delphi, and expert estimation
e Estimation by use of work breakdown structures such as those found in management software or
project templates
e Parametric estimation such as Constructive Cost Model (COCOMO)
e Size-based estimations such as Function Point Analysis, Story Point Analysis, or Use Case
Analysis
e Group estimations such as Planning Poker

Ease of use for a given testware architecture implementation
In addition to the functionality of the TAS, its compatibility with the SUT, its long-term stability and
evolvability, its effort requirements, and ROI considerations, a TAE has the specific responsibility to address
usability issues for a TAS. This includes, but is not limited to:

e Tester-oriented design

e Ease of use of the TAS

e TAS support for other roles in the software development, quality assurance, and project

management
e Effective organization, navigation, and search in/with the TAS

Version 2016 Page 30 of 84 21 Oct 2016

© International Software Testing Qualifications Board

g / International
Certified Tester ISTQB Software Testing

Advanced Level Syllabus — Test Automation Engineer [Qualifications Board

e Useful documentation, manuals, and help text for the TAS
e Practical reporting by and about the TAS
e lterative designs to address TAS feedback and empirical insights

3.2.2 Approaches for Automating Test Cases

Test cases need to be translated into sequences of actions which are executed against an SUT. That
sequence of actions can be documented in a test procedure and/or can be implemented in a test script.
Besides actions, the automated test cases should also define test data for the interaction with the SUT and
include verification steps to verify that the expected result was achieved by the SUT. A number of
approaches can be used to create the sequence of actions:
1. The TAE implements test cases directly into automated test scripts. This option is the least
recommended as it lacks abstraction and increases the maintenance load.
2. The TAE designs test procedures, and transforms them into automated test scripts. This option
has abstraction but lacks automation to generate the test scripts.
3. The TAE uses atool to translate test procedures into automated test scripts. This option combines
both abstraction and automated script generation.
4. The TAE uses a tool that generates automated test procedures and/or translates the test scripts
directly from models. This option has the highest degree of automation.

Note that the options are heavily dependent on the context of the project. It may also be efficient to start
test automation by applying one of the less advanced options, as these are typically easier to implement.
This can provide added value at short term although it will result in a less maintainable solution.

Well-established approaches for automating test cases include:
e Capture/playback approach, which can be used for option 1
e Structured scripting approach, data-driven approach, and keyword-driven approach, which can be
used for option 2 or 3
e Model-based testing (including the process-driven approach), which can be used for option 4

These approaches are explained subsequently in terms of principal concepts and pros and cons.

Capture/playback approach

Principal concept

In capture/playback approaches, tools are used to capture interactions with the SUT while

performing the sequence of actions as defined by a test procedure. Inputs are captured; outputs

may also be recorded for later checks. During the replay of events, there are various manual and

automated output checking possibilities:

e Manual: the tester has to watch the SUT outputs for anomalies

e Complete: all system outputs that were recorded during capture must be reproduced by the
SUT

o Exact: all system outputs that were recorded during capture must be reproduced by the SUT
to the level of detail of the recording

e Checkpoints: only selected system outputs are checked at certain points for specified values

Pros
The capture/playback approach can be used for SUTs on the GUI and/or API level. Initially, it is
easy to setup and use.

Version 2016 Page 31 of 84 21 Oct 2016

© International Software Testing Qualifications Board

/ International

Certified Tester ISTQB Software Testing

Advanced Level Syllabus — Test Automation Engineer [Qualifications Board

Cons
Capture/playback scripts are hard to maintain and evolve because the captured SUT execution
depends strongly on the SUT version from which the capture has been taken. For example, when
recording at the GUI level, changes in the GUI layout may impact the test script, even if it is only a
change in the positioning of a GUI element. Therefore, capture/replay approaches remain
vulnerable to changes.

Implementation of the test cases (scripts) can only start when the SUT is available.

Linear scripting

Principal concept
As with all scripting techniques, linear scripting starts with some manual test procedures. Note
though that these may not be written documents — the knowledge about what tests to run and how
to run them may be ‘known’ by one or more Test Analysts.

Each test is run manually while the test tool records the sequence of actions and in some cases
captures the visible output from the SUT to the screen. This generally results in one (typically large)
script for each test procedure. Recorded scripts may be edited to improve readability (e.g., by
adding comments to explain what is happening at key points) or add further checks using the
scripting language of the tool.

The scripts can then be replayed by the tool, causing the tool to repeat the same actions taken by
the tester when the script was recorded. Although this can be used to automate GUI tests, it is not
a good technique to use where large numbers of tests are to be automated and they are required
for many releases of the software. This is because of the high maintenance cost that is typically
caused by changes to the SUT (each change in the SUT may necessitate many changes to the
recorded scripts).

Pros
The advantages of linear scripts focus on the fact that there is little or no preparation work required
before you can start automating. Once you have learned to use the tool it is simply a matter of
recording a manual test and replaying it (although the recording part of this may require additional
interaction with the test tool to request that comparisons of actual with expected output occurs to
verify the software is working correctly). Programming skills are not required but are usually helpful.

Cons
The disadvantages of linear scripts are numerous. The amount of effort required to automate any
given test procedure will be mostly dependent on the size (number of steps or actions) required to
perform it. Thus, the 1000th test procedure to be automated will take a similarly proportional amount
of effort as the 100th test procedure. In other words, there is not much scope for decreasing the
cost of building new automated tests.

Furthermore, if there were a second script that performed a similar test albeit with different input
values, that script would contain the same sequence of instructions as the first script; only the
information included with the instructions (known as the instruction arguments or parameters)
would differ. If there were several tests (and hence scripts) these would all contain the same
sequence of instructions, all of which would need to be maintained whenever the software changed
in a way that affected the scripts.

Version 2016 Page 32 of 84 21 Oct 2016

© International Software Testing Qualifications Board

/ International

Certified Tester ISTQB Software Testing

Advanced Level Syllabus — Test Automation Engineer [Qualifications Board

Because the scripts are in a programming language, rather than a natural language, non-
programmers may find them difficult to understand. Some test tools use proprietary languages
(unique to the tool) so it takes time to learn the language and become proficient with it.

Recorded scripts contain only general statements in the comments, if any at all. Long scripts in
particular are best annotated with comments to explain what is going on at each step of the test.
This makes maintenance easier. Scripts can soon become very large (containing many
instructions) when the test comprises many steps.

The scripts are non-modular and difficult to maintain. Linear scripting does not follow common
software reusability and modularity paradigms and is tightly coupled with the tool being used.

Structured scripting

Principal concept

Pros

Cons

The major difference between the structured scripting technique and the linear scripting technique
is the introduction of a script library. This contains reusable scripts that perform sequences of
instructions that are commonly required across a number of tests. Good examples of such scripts
are those that interface, e.g., to the operations of SUT interfaces.

Benefits of this approach include a significant reduction in the maintenance changes required and
the reduced cost of automating new tests (because they can use scripts that already exist rather
than having to create them all from scratch).

The advantages of structured scripting are largely attained through the reuse of scripts. More tests
can be automated without having to create the volume of scripts that a linear scripting approach
would require. This has a direct impact on the build and maintenance costs. The second and
subsequent tests will not take as much effort to automate because some of the scripts created to
implement the first test can be reused again.

The initial effort to create the shared scripts can be seen as a disadvantage but this initial
investment should pay big dividends if approached properly. Programming skills will be required to
create all the scripts as simple recording alone will not be sufficient. The script library must be well
managed, i.e., the scripts should be documented and it should be easy for Technical Test Analysts
to find the required scripts (so a sensible naming convention will help here).

Version 2016 Page 33 of 84 21 Oct 2016

© International Software Testing Qualifications Board

g / International
Certified Tester ISTQB Software Testing

Advanced Level Syllabus — Test Automation Engineer [Qualifications Board

Data-driven testing

Principal concept
The data-driven scripting technique builds on the structured scripting technique. The most
significant difference is how the test inputs are handled. The inputs are extracted from the scripts
and put into one or more separate files (typically called data files).

This means the main test script can be reused to implement a number of tests (rather than just a
single test). Typically the ‘reusable’ main test script is called a ‘control’ script. The control script
contains the sequence of instructions necessary to perform the tests but reads the input data from
a data file. One control test may be used for many tests but it is usually insufficient to automate a
wide range of tests. Thus, a number of control scripts will be required but that is only a fraction of
the number of tests that are automated.

Pros
The cost of adding new automated tests can be significantly reduced by this scripting technique.
This technique is used to automate many variations of a useful test, giving deeper testing in a
specific area and may increase test coverage.

Having the tests ‘described’ by the data files means that Test Analysts can specify ‘automated’
tests simply by populating one or more data files. This gives Test Analysts more freedom to specify
automated tests without as much dependency on the Technical Test Analysts (who may be a
scarce resource).

Cons
The need to manage data files and make sure they are readable by TAS is a disadvantage but can
be approached properly.

Also, important negative test cases may be missed. Negative tests are a combination of test
procedures and test data. In an approach targeting test data mainly, "negative test procedures"”
may be missed.

Keyword-driven testing

Principal concept
The keyword-driven scripting technique builds on the data-driven scripting technique. There are
two main differences: (1) the data files are now called ‘test definition’ files or something similar (e.g.,
action word files); and (2) there is only one control script.

A test definition file contains a description of the tests in a way that should be easier for Test
Analysts to understand (easier than the equivalent data file). It will usually contain data as does the
data files but keyword files also contain high level instructions (the keywords, or ‘action words’).

The keywords should be chosen to be